-
色谱分析 编辑
中文名:色谱分析
外文名:chromatographicanalysis
实质:一种分离、分析的方法
原理:固定相与流动相分配系数的差异
分类:液相色谱、气相色谱等
特点:效果好,设备简单,操作方便等
色谱分析有两个要素——流动相和固定相。在流动相从固定相的一端流到另一端的过程中,加在固定相起始端的溶质随流动相流动,并在流动相和固定相之间来回转移。不同的溶质与这两相的亲和力大小不同,溶质的移动速度也不同,因而得到分离。固定相一般是固体,也可以是固体上附着液体;流动相是液体或气体。
色谱分析具有很多优点:分离效果好,设备简单,操作方便,条件较温和,方法多样,能适应不同的需要。其缺点主要是:处理量小,周期长,不能连续操作;有的层析介质价格昂贵,有时找不到合适的介质。
色谱分析(层析)有各种类型。按照固定相使用的形式,可分为柱层析、纸层析、薄层层析。按照溶质的展开方式,可分为前沿层析、置换层析、洗脱层析。按照流动相的物理状态,可分为气相层析与液相层析,以及超临界流体层析等。按照分离机理,可分为分配层析、吸附层析、离子交换层析、排阻层析、疏水层析、离子对层析、亲和层析、键合相层析。按照固定相和流动相的相对极性,可分为正相层析与反相层析。
在层操作时,单组分洗脱剂对多组分样品的洗脱效果常常不够满意。不是先洗出的组分混杂在一起,就是后洗出的组分出峰时间长,峰宽增加。为了改善分辨率、改变峰形或缩短层析时间,有时需要在层析过程中改变流动相的组成(pH、离子强度)。分阶段改变流动相的组成,流动相的组成呈阶梯状变化,称为阶段洗脱。逐渐改变流动相的组成,流动相的组成呈曲线或直线状变化,称为梯度洗脱。流动相形成梯度可用梯度洗脱仪。高效液相层析仪中常用几个泵分别输送不同的溶剂,控制各个泵的流量,就能控制洗脱剂的组成。
改善层析分离效果的方法有:改变流动相的组成或pH,改变固定相,改变温度等。在液相层析中以改变流动相的组成最重要。其余要注意的条件有:柱要细而长;分离介质填充要紧密、均匀,颗粒细密、大小分布均匀;操作温度保持恒定;样品用量少;流速慢而恒定。
用来分离物质和检测、记录物质的色谱图,并进行定性、定量分析的仪器,称为色谱分析仪,通常有气相色谱仪和液相色谱仪两大类。
气相色谱仪
气相色谱仪的种类和型号很多,但都包括气路系统、进样系统、分离系统、检测系统和记录与数据处理系统。
气路系统 气路系统为色谱分析提供纯净、连续的气流,仪器的气路由载气、氢气和空气三个气路组成,后两个气路仅在氢焰检测器中使用,常用的载气有N2,H2,He和Ar等。
进样系统 进样系统主要包括进样器和气化室。液体样品常用微量注射器进样。样品由针刺穿进样口中的硅橡胶密封垫注人气化室,液体样品瞬间完全气化,并被载气带入色谱柱。
分离系统色谱柱 分离系统色谱柱是色谱仪的关键部分,色谱柱可分为填充柱和毛细管柱两大类。
检测系统 检测系统把从色谱柱流出的各个组分的浓度(或质量)信号转换成电信号的装置,也是色谱仪的主要部件之一,应用最广泛的是热导池检测器(TCD)和氢火焰离子化检测器(FID)。
记录与数据处理系统 由检测器检测的信号经放大器放大后由记录仪记录,也可通过微处理机、色谱工作站进行数据处理。
液相色谱仪
高效液相色谱仪是液相色谱仪中应用最广泛的一种。高效液相色谱仪结构和流程与气相色谱仪大致相似。通常包括:液路系统、进样系统(采用高压输液泵)、分离系统(采用高效固定相)、检测系统(采用高灵敏度检测器)、记录系统。
色谱分析是仪器分析领域中发展迅速,研究和应用十分活跃的领域之一。由于色谱分析可以连续对样品进行浓缩、分离、提纯及测定,使其成为每一个分析工作者普遍采用的分析、检测手段,并已广泛应用于石油、化工、食品、医药、卫生、冶金、地质、农业、环境保护等各个行业中,可以说只要有分析任务的地方都在使用色谱分析法。近二三十年来发展的气相色谱一质谱(GC-MS)联用技术、离子色谱(IC)、超临界流体色谱(SFC)、毛细管区带电泳(CZE)等技术使色谱分析领域更是充满了活力。尤其是毛细管电泳技术,具有分离效率高(柱效达100万以上理论塔板数/m),样品用量小(10-6~10-9 mL)、灵敏度高(检出限低至10-15~10-20 mol·L-1),分离速度快(小于10 min)等特点,适用于离子型大分子,如氨基酸、核酸、肽及蛋白质的分析,甚至细胞和病毒等的快速、高效测定,在生物分析及生命科学领域中有极为广阔的应用前景。
在农业上,气相色谱法可以对农药残留量、氨基酸、维生素、激素、糖类、脂质、核酸等进行测定,也可对某些金属离子以及大气中的CO2,SO2,H2S,甲烷等进行分析。高效液相色谱法可对维生素、生物碱、激素、氨基酸、农药、核酸、香豆素、脂质等有机物质进行分析,也可测定一些无机离子及金属元素。离子色谱法是一种分析无机和有机离子的液相色谱技术,能测定数百种阴、阳离子和化合物,最适合多组分与多元素的同时分析。该方法选择性好,样品用量少,灵敏度高,易实现自动化,是分析水中阴离子的最好方法,多应用于环境水样的测定。