DNA变性 编辑

生物术语
特别提示:本站内容仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。
DNA变性,是指核酸双螺旋碱基对氢键断裂,碱基间的堆积遭到破坏,双链成单链,使核酸的天然构象和性质发生改变,但不涉及其一级结构的改变。凡能破坏双螺旋稳定的因素(如加热、极端的pH、有机试剂如甲醇乙醇尿素甲酰胺)均可引起核酸分子变性。变性后的DNA常发生一些理化及生物学性质的改变:①溶液黏度降低。DNA双螺旋是紧密的刚性结构,变性后则是柔软而松散的无规则单股线性结构,DNA黏度因此而明显下降。②溶液旋光性发生改变。变性后整个DNA分子的对称性及分子局部的构象改变,使DNA溶液的旋光性发生变化。③增色效应。

基本信息

编辑

中文名:DNA变性

外文名:DNADenaturation或DNAmelting

特点:双链变成单链

领域:遗传学

条件:加热、极端的pH等

简介

编辑

DNA双螺旋结构模型,不仅与其生物能有密切关系,还能解释DNA的重要特性变性与复性,这对于深入了解DNA分子结构功能的关系又有重要意义。

性质改变

编辑

变性DNA常发生一些理化及生物学性质的改变:

1)溶液粘度降低。DNA双螺旋是紧密的刚性结构,变性后代之以柔软而松散的无规则单股线性结构,DNA粘度因此而明显下降。

2)溶液旋光性发生改变。变性后整个DNA分子的对称性及分子局部的构性改变,使DNA溶液的旋光性发生变化。

3)增色效应(hyperchromic effeCT)。指变性后DNA溶液的紫外吸收作用增强的效应。DNA分子中碱基间电子的相互作用使DNA分子具有吸收260nm波长紫外光的特性。在DNA双螺旋结构中碱基藏入内侧,变性时DNA双螺旋解开,于是碱基外露,碱基中电子的相互作用更有利于紫外吸收,故而产生增色效应。

4)浮力密度升高。

5)生物活性改变。

产生原因

编辑

DNA的变性可以是温度升高而产生的作用,也可能是其他化学物质如尿素的诱导

应用

编辑

DNA变性,也可用于检测两个不同的DNA序列之间之序列差异。将DNA加热和变性成单链状态,并将该混合物冷却使可以重新进行杂交。杂交分子的相似序列中如果互补序列有差异,则会导致碱基配对中断。在基因组范围中,该方法已被用于估算两物种之间遗传距离的研究,称为DNA-DNA杂交。在其中的单个分区的DNA,变性梯度凝胶和温度梯度凝胶可用于检测此两个序列,此法称为温度梯度凝胶电泳,为表现较小差异时使用的方法。

DNA熔解的也应用于分子生物学技术,特别是在聚合链式反应。尽管此技术不能诊断DNA熔化的温度,所以估计(Tm)是确定来调整是和温度是非常重要的。DNA的熔解温度也可被用作用于均衡的一组分子的杂交优势,例如的寡核苷酸探针DNA微阵列。

熔解温度

编辑

(Tm,melting temperature)

双链DNA进行加热变性,当温度升高到一定高度时,DNA溶液在260nm处的吸光度突然明显上升至最高值,随后即使温度继续升高,吸光度也不再明显变化。若以温度对DNA溶液的紫外吸光率作图,得到的典型DNA变性曲线呈S型。可见DNA变性是在一个很窄的温度范围内发生的。通常将核酸加热变性过程中,紫外光吸收值达到最大值的50%时的温度称为核酸的解链温度,由于这一现象和结晶的融解相类似,又称融解温度(Tm,melting temperature)。在Tm时,核酸分子内50%的双螺旋结构被破坏。特定核酸分子的Tm值与其G+C所占总碱基数的百分比正相关,两者的关系可表示为:? Tm=69.3+0.41*(G+C)%?一定条件下(相对较短的核酸分子),Tm值大小还与核酸分子的长度有关,核酸分子越长,Tm值越大;另外,溶液的离子强度较低时,Tm值较低,融点范围也较宽,反之亦然,因此DNA制剂不应保存在离子强度过低的溶液中。

上一篇 甲酰胺

下一篇 熔解温度