-
DNA二级结构 编辑
人们在20世纪初就已经知道基因位于染色体上,科学家也急于搞清楚染色体上的基因的化学本质。起初,大多数科学家认为蛋白质是遗传物质,而不是DNA,直到1944年 Avery等利用从致病肺炎球菌中提取的DNA使另一种非致病性肺炎球菌的遗传性状改变而成为致病菌,证实了遗传物质是DNA而不是蛋白质。人们才逐渐将核酸化学的研究和细胞的功能联系起来。
1951年, Pauling利用X线晶体衍射技术成功发现了蛋白质的α螺旋结构,这一成果的发现对DNA二级结构的发现也起了很重要的启发作用,引发人们思考DNA分子是否也同样具有这个类似的螺旋结构。同年, Wilkins和 Frankin利用技术成功获得了高质量的DNA分子结构照片,分析结果表明DNA是螺旋状分子,并且从密度上也提示了DNA以双链的形式存在。1952年, Erwin chAngan等人采用层析和紫外吸收分析等技术研究了DNA分子的碱基成分,提岀了以下有关DNA分子的碱基组成的 Chargaff规则:①腺嘌呤与胸腺嘧啶的摩尔数总是相等(A=T),鸟嘌呤的含量总是与胞嘧啶相等(G=C);②不同生物种属的DNA碱基组成不同;③同一个体不同器官、不同组织的DNA具有相同的碱基组成。预示了DNA分子中的碱基A与T,G与C以互补配对方式存在的可能性。
1953年,美国生物学家 Watson和英国物理学家 Crick合作在英国剑桥卡文迪许研究所巧妙地综合了当时所能够得到的关于DNA结构研究成果,揭示出核酸的化学结构,提岀脱氧核糖核酸(DNA)分子结构的双螺旋模型,即著名的“Wasn-Cick模型”,这一模型的提出是生物学发展史上的里程碑,后来被誉为“20世纪生物学中最伟大的发现”和“生物学中的决定性突破”,又被视为分子生物学诞生的标志,为今天生物工程学的蓬勃发展开辟了道路。1989年,美国科学家用“扫描隧道显微镜”直接观察到了脱氧核糖核酸的双螺旋结构。
Watson和 Crick提出DNA双螺旋结构模型主要依据:①已知核酸化学结构和核苷酸键长与键角的数据;② Chargaff规则为DNA二级结构模型的建立提供了一个有力的证据,细胞中的DNA分子几乎都是由双链分子构成的,对其组成成分的结晶学和物理化学研究表明,A和T、C和G可形成配对关系;③对DNA纤维进行X线衍射分析获得的精确结果。
1953年,弗朗西斯·克里克、杰姆斯·沃森、莫里斯·威尔金斯、罗莎琳·富兰克林发现了DNA双螺旋的结构,开启了分子生物学时代。分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径
1962年10月,瑞典卡罗林斯卡医学院诺贝尔生理学或医学奖评选委员会宣布,当年的诺贝尔生理学或医学奖授予英国的莫里斯·威尔金斯、弗朗西斯·克里克和美国的杰姆斯·沃森,理由是他们发现并证明了细胞核DNA的双螺旋结构,这对于研究和认识生命现象与本质具有重要意义。
(1) DNA由两条反向平行的多聚脱氧核苷酸链形成右手螺旋:一条链的5’-3方向是自上而下,而另一条链的3’-5’方向是自下而上,称为反向平行,它们围绕着同一个螺旋轴旋转而形成右手螺旋。
(2)由脱氧核糖和磷酸基团构成的亲水性骨架位于双螺旋结构的外侧,而疏水的碱基位于内侧。
(3)位于DNA双链内侧的碱基以氢键结合,形成了互补碱基对:一条链上的腺嘌呤(A)与另一条链上的胸腺嘧啶(T)形成了2个氢键;一条链上的鸟嘌呤(G)与另一条链上的胞嘧啶(C)形成了3个氢键这种碱基配对关系称为互补碱基对,DNA的两条链则称为互补链
(4)碱基对平面与双螺旋的螺旋轴垂直,每两个相邻的碱基对平面之间的垂直距离为0. 34 nm,每一个螺旋含有10.5个碱基对,螺距为3.54 nm,DNA双螺旋结构的直径为2. 37 nm。从外观上,DNA双螺旋结构的表面存在一个大沟(major groove)和一个小沟( miNOr groove),大沟是蛋白质识别DNA碱基序列发生相互作用的基础。
(5) DNA双螺旋结构的稳定主要依靠碱基对之间的氢键和碱基平面的疏水堆积力共同维持。相邻的两个碱基对平面在旋进过程中会彼此重叠( overlapping),由此产生了疏水性的碱基堆积力( base stacking interaCTion)。这种碱基堆积力和互补链之间碱基对的氢键共同维系着DNA双螺旋结构的稳定,并且前者的作用更为重要。
四链DNA的基本结构单位是G四联体(G tetraplex),即由4个鸟嘌呤通过8个Hoogsteen氢键相互连接为一个四角形,再堆积形成分子内或分子间的右手螺旋。四链中DNA链的方向可以为同向,也可以为反向。真核生物DNA线性分子3'-末端富含GT序列的端粒可形成G四链体结构。