-
铁心电感 编辑
目录
电源滤波扼流圈
电源滤波扼流圈用于平滑整流后的直流成分,减小其波纹电压,以满足电子设备对直流电源的要求。
电源滤波扼流圈的主要技术指标为: 电感量、直流电压降。电感量由所要求的波纹系数,在进行整流器和滤波器计算时确定;直流电压降影响整流器输出电压和负载调整率。
通过电源滤波扼流圈线圈的电流包括直流和交流两部分,并以直流电流为主要成分。在扼流圈铁心中存在着交直流两种磁化场,其中直流分量是主要部分。
根据滤波器的种类,电源滤波扼流圈可分为电感输入式和电容输入式两种。电感输入式滤波扼流圈具有较高的波纹电压,铁心中交流磁感应强度一般在0.1T以上;电容输入式滤波扼流圈具有较低的波纹电压,铁心中交流磁感应强度一般在0.1T以下。
电源滤波扼流圈的电感量随着直流磁化电流的增加而降低,这是由于随着直流磁化电 流的增大,铁心越来越达到饱和状态。在扼流圈铁心磁路中引入非磁性间隙可以减小电感 随直流磁化电流增大而产生的下降量,对应于给定的直流磁化电流,具有一个最佳的非磁性间隙,相应于这个最佳间隙,电源滤波扼流圈可获得最大的电感值。
交流扼流圈
交流扼流圈用于交流回路中,作为平衡、镇流、限流和滤波等感性元件来使用。
交流扼流圈工作于交流状态,无直流磁化,类似于单线圈变压器。其电磁过程与变压 器的区别是: 在变压器铁心中的磁感应强度的确定取决于外施电压,与实际的负载电流无 关;对大多数交流扼流圈来说,铁心中磁感应强度的确定取决于负载电流,而与电路的外施电压无关。
交流扼流圈的电感量随交流磁场的变化而变化,而且是非线性的,只有在铁心未达到饱和时,变化才近似线性,这时,电感随交流磁场的增大而增大。在交流扼流圈铁心中插入非磁性间隙将减小其电感量,但电感随磁场的变化量也同时减小,因此变化非磁性间隙 的大小可调节电感值。当铁心中非磁性间隙增大至一定值时,在磁场变化时,电感将基本保持不变,这时的交流扼流圈将具有线性的伏安特性。大多数交流扼流圈都具有接近于线 性的伏安特性。
交流扼流圈的主要技术指标是,在某一交流电流 (固定的或有一定变化范围的)作用 下的电感值。对某些工作于高频的交流扼流圈,品质因数Q也是一个重要的技术指标。
电感线圈
电感线圈多数用于高频电路中,如滤波器用电感线圈,振荡回路电感线圈,陷波器线圈,高频扼流圈,匹配线圈,噪声滤波线圈等。多数电感线圈工作于交流状态,因此,它 属于交流扼流圈范畴,是交流扼流圈的一个分支。
电感线圈的铁心以铁氧体磁芯使用最多,也有采用钼坡莫粉末磁芯,铁粉芯,铝硅铁粉芯,非晶或超微晶粉末磁芯及精密软磁合金等。
电感线圈的主要技术指标为电感量和品质因数。在某些场合,对电感的温度稳定性也 有一定的要求。
饱和扼流圈
饱和扼流圈用于稳定和调压线路中,通过调节电路中的感抗来达到稳定或调节电压的 目的。饱和扼流圈至少有两个绕组,一个绕组(工作绕组) 接入调节交流电路,另一个绕 组(控制绕组) 接入直流电路。和电源滤波扼流圈及交流扼流圈不同,饱和扼流圈铁心应 是无气隙的。
饱和扼流圈铁心中存在着交直流两种磁化状态,而且交流成分很大,由于铁心磁化曲 线的非线性,工作绕组中电流波形是失真的,这在接近铁心饱和时特别明显。
饱和扼流圈的主要技术指标是: 电感量调节范围或输出电压调节范围,负载功率的最 大值与最小值,控制电流(功率) 的最大值与最小值,功率因数最小值等。
由于可控硅调压装置、磁性调压器、可调稳压变压器的技术发展,饱和扼流圈应用范 围逐步缩小,只有在大功率或特殊要求场合才使用,为此,本手册将不加详述 。
基本计算式
铁心电感器线圈中通以交流电流后,所产生的磁通分为两部分: 一部分是通过铁心磁 路(包括在铁心磁路中插入非磁性气隙) 的主磁通,另一部分是通过线圈与铁心柱间空隙 的漏磁通。根据电感的基本定义,我们将主磁通产生的电感称为主电感
铁心中无气隙时的电感计算
铁心电感器铁心中无气隙时,其漏电感可忽略不计,电感量按下式计算
N——线圈匝数;
铁心交流磁导率
由此可见,正确地确定铁心的磁导率是电感计算的基础。
图1 XE5型铁心磁导率曲线
图2 R2K铁氧体EE型磁芯磁导率曲线
交流磁导率
铁心中有气隙时的电感计算
铁心电感器中有气隙时,当忽略其漏电感,其电感量按下式计算
当
当
图3 气隙磁通的扩散现象
考虑气隙磁通扩散后,气隙导磁面积
此时,在按式(3)计算电感或按式(5)计算有效磁导率时,将
大气隙电感计算
当
1. 当忽略漏电感时的电感计算
2. 考虑漏电感影响时的电感计算
当漏电感不能忽略时,必须按以下公式计算漏电感
(1) 壳式或单线圈心式铁心电感器(图4) 漏电感按下式计算
N——电感器线圈匝数;
洛氏系数
线圈漏磁等效面积
(2) 双线圈式铁心电感器(图5) 漏电感按下式计算
图4 壳式和单线圈心式铁心的漏感
图5 双线圈心式铁心的漏感
式中,
铁心电感器的主电感
铁心电感器的电感L为