-
气孔 编辑
中文名:气孔
外文名:stomata
释义:叶、茎及其他植物器官上皮上许多小的开孔之一
存在位置:植物体的地上部分
性质:是植物表皮所特有的结构
作用:在碳同化、呼吸、蒸腾作用等气体代谢中,成为空气和水蒸气的通路
以裸子植物为中心对气孔的形成过程和亲缘关系十分重视。气孔是从原表皮细胞中发生的,气孔母细胞(stomatal mother CELL)横分裂为三,中央细胞再分为二,成为保卫细胞,左右二细胞则成为副卫细胞的形式,相反,也有母细胞仅二分为保卫细胞的形式,后者被视为原始型。这两种形式在裸子植物系统分类上受到重视(R. Flor-in,1951),单唇型在苏铁蕨类(Cycadofilices)、苏铁类(Cycadinae)、苛得狄类(CorDAitinae)、银杏类(Ginkgoinae)、针叶树类(Coniferae)、麻黄类(Ephedrales)(狭义)可见到,复唇型则在本纳苏铁类(Bennettitales)、百岁兰类(Welwitschiales)、买麻藤类(Gnetales)可见到。
双子叶植物的气孔有四种类型
无规则型
保卫细胞周围无特殊形态分化的副卫细胞,如毛茛科植物
不等型
保卫细胞周围有三个副卫细胞围绕,如十字花科和景天科植物
平行型
在保卫细胞的外侧面有几个副卫细胞与其长轴平行,如茜草科和蝶形花科
横列型
一对副卫细胞共同与保卫细胞的长轴成直角.围成气孔间隙的保卫细胞形态上也有差异,大多数植物的保卫细胞呈肾形,近气孔间隙的壁厚,背气孔间隙的壁薄,如石竹科;稻、麦等植物的保卫细胞呈哑铃形,中间部分的壁厚,两头的壁薄。
气孔的开关与保卫细胞的水势有关,保卫细胞水势下降而吸水膨胀,气孔就张开,水势上升而失水缩小,使气孔关闭。
引起保卫细胞水势的下降与上升的原因主要存在以下学说。
淀粉-糖转化学说
(starch-sugar conversion theory)
光合作用是气孔开放所必需的。黄化叶的保卫细胞没有叶绿素,不能进行光合作用,在光的影响下,气孔运动不发生。
很早以前已观察到,pH影响磷酸化酶反应(在pH6.1~7.3时,促进淀粉水解;在pH2.9~6.1时,促进淀粉合成):
淀粉-糖转化学说认为,植物在光下,保卫细胞的叶绿体进行光合作用,导致CO2浓度的下降,引起pH升高(约由5变为7),淀粉磷酸化酶促使淀粉转化为葡萄糖-1-P,细胞里葡萄糖浓度高,水势下降,副卫细胞(或周围表皮细胞)的水分通过渗透作用进入保卫细胞,气孔便开放。黑暗时,光合作用停止,由于呼吸积累CO2和H2CO3,使pH降低,淀粉磷酸化酶促使糖转化为淀粉,保卫细胞里葡萄糖浓度低,于是水势升高,水分从保卫细胞排出,气孔关闭。试验证明,叶片浮在pH值高的溶液中,可引起气孔张开;反之,则引起气孔关闭。
但是,事实上保卫细胞中淀粉与糖的转化是相当缓慢的,因而难以解释气孔的快速开闭。试验表明,早上气孔刚开放时,淀粉明显消失而葡萄糖并没有相应增多;傍晚,气孔关闭后,淀粉确实重新增多,但葡萄糖含量也相当高。另外,有的植物(如葱)保卫细胞中没有淀粉。因此,用淀粉-糖转化学说解释气孔的开关在某些方面未能令人信服。
(iNOrganic ion uptake theory)
该学说认为,保卫细胞的渗透势是由钾离子浓度调节的。光合作用产生的ATP,供给保卫细胞钾氢离子交换泵做功,使钾离子进入保卫细胞,于是保卫细胞水势下降,气孔就张开。1967年日本的M.Fujino观察到,在照光时漂浮于KCl溶液表面的鸭跖草保卫细胞钾离子浓度显著增加,气孔也就开放;转入黑暗或在光下改用Na、Li时,气孔就关闭。撕一片鸭跖草表皮浮于KCl溶液中,加入ATP就能使气孔在光下加速开放,说明钾离子泵被ATP开动。用电子探针微量分析仪测量证明,钾离子在开放或关闭的气孔中流动,可以充分说明,气孔的开关与钾离子浓度有关。
苹果酸生成学说
(malate produCTion theory)
人们认为,苹果酸代谢影响着气孔的开闭。在光下,保卫细胞进行光合作用,由淀粉转化的葡萄糖通过糖酵解作用,转化为磷酸烯醇式丙酮酸(PEP),同时保卫细胞的CO2浓度减少,pH上升,剩下的CO2大部分转变成碳酸氢盐(HCO3),在PEP羧化酶作用下,HCO3与PEP结合,形成草酰乙酸,再还原为苹果酸。苹果酸会产生H+,ATP使H-K交换泵开动,质子进入副卫细胞或表皮细胞,而K进入保卫细胞,于是保卫细胞水势下降,气孔就张开。
此外,气孔的开闭与脱落酸(ABA)有关。当将极低浓度的ABA施于叶片时,气孔就关闭。后来发现,当叶片缺水时,叶组织中ABA浓度升高,随后气孔关闭。
光照引起的气孔运动
保卫细胞的叶绿体在光照下进行光合作用,利用CO2,使细胞内pH值增高,淀粉磷酸化酶水解淀粉为磷酸葡萄糖,细胞内水势下降.保卫细胞吸水膨胀,气孔张开;黑暗里呼吸产生的CO2使保卫细胞的pH值下降,淀粉磷酸化酶又把葡萄糖合成为淀粉,细胞液浓度下降,水势升高,保卫细胞失水,气孔关闭。保卫细胞的渗透系统也可由K 来调节。光合作用光反应(环式与非环式光合磷酸化)产生ATP,通过主动运输逆着离子浓度差吸收K ,降低保卫细胞水势,吸水使气孔张开。注意:①如果光照强度在光补偿点以下,气孔关闭;②在引起气孔张开的光质上以红光与蓝紫光效果最好;③景天科植物夜晚气孔张开,吸收和贮备CO2(形成苹果酸贮于液泡中),白天气孔关闭,苹果酸分解成丙酮酸释放CO2进行光合作用。
二氧化碳影响气孔运动
低浓度CO2促进气孔张开,高浓度CO2使气孔迅速关闭,无论光照或黑暗皆如此。抑制机理可能是保卫细胞pH下降,水势上升,保卫细胞失水,必须在光照一段时间待CO2逐渐被消耗后,气孔才迅速张开。
温度影响气孔运动
气孔张开度一般随温度的上升而增大,在30℃左右达到最大,低温(如10℃以下)虽长时间光照,气孔仍不能很好张开,主要是淀粉磷酸化酶活性不高之故,温度过高会导致蒸腾作用过强,保卫细胞失水而气孔关闭。
叶片含水量影响气孔运动
白天若蒸腾过于强烈,保卫细胞失水气孔关闭,阴雨天叶子吸水饱和,表皮细胞含水量高,挤压保卫细胞,故白天气孔也关闭。
风
微风时对气孔的打开有促进作用,因为微风可以适当降低叶片周围的湿度。大风则促使气孔关闭。
化学物质
醋酸苯汞、阿特拉津(2-氯-4-乙氨基-6-异丙氨基均三氮苯)、乙酰水杨酸等能抑制气孔开放,降低蒸腾。脱落酸的低浓度溶液洒在叶表面,可抑制气孔开放达数天,并且作用快,在2~10分钟内可使多种植物气孔开始关闭。细胞分裂素可促进气孔开放。