编辑

一种几何图形
特别提示:本站内容仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。
在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫作圆(Circle),全称圆形。在平面内,圆是到定点的距离于定长的点的集合叫作圆(Circle)。圆有无数条对称轴,对称轴经过圆。圆具有旋转不变性。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种

基本信息

编辑

中文名:圆

外文名:Circle

别名:圆形

表达式:(x-a)²+(y-b)²=r²

适用领域:几何

应用学科:数学、科学

图形表示:⚪

面积计算公式:S=πr

周长计算公式:C=2πrC=πd

表示方法:⊙O(读作“圆O”)

定义

编辑

在同一平面内到定点的距离等于定长的点的集合叫做(circle)。这个定点叫做圆的圆心

圆形一周的长度,就是圆的周长。能够完全重合的两个圆叫等圆。

圆不是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0的正n边形可以近似约等于圆,但并不是圆。

相关概念

编辑

1.连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)。

2.通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。

在同一个圆中,圆的直径 d=2r

1.连接圆上任意两点的线段叫做(chord).在同一个圆内最长的弦是直径。平面内,过圆心的弦是直径,直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。

1.圆上任意两点间的部分叫做圆弧,简称弧(arc),以符号“⌒”表示。

2.大于半圆的弧称为优弧,小于半圆的弧称为劣弧所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。

3.在同圆或等圆中,能够互相重合的两条弧叫做等弧。

1.顶点在圆心上的角叫做圆心角(central Angle),圆心角度数等于所对的弧的度数。

2. 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半,等于所对的弧的度数的一半。

等圆

能够重合的两个圆叫做等圆。

同心圆

圆心相同的圆叫做同心圆。

同圆

半径相同的圆叫做同圆。

圆周率

圆的周长与直径的比值叫做圆周率,即圆周率=圆周长÷直径。它是一个无限不循环小数,通常用字母π(读作“pài”)表示。

π≈3.1415926535897932384626433......计算时通常取近似值3.14。可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。

1.由弦和它所对的一段弧围成的图形叫做弓形。

2.直径一样的圆中,圆的一半小于半圆(周长)。

3. 由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形(seCTor)。

对称性

编辑

圆是轴对称图形,对称轴在过圆心的直线上,圆有无数条对称轴。圆同时也是中心对称图形,对称中心有且仅有一个,位于圆的圆心。

表示方式

编辑

圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);圆心—O;弧—⌒;直径—d ;

扇形弧长—L ; 周长—C ; 面积—S。

计算公式

编辑

周长公式

圆的周长:

圆周长的一半 c=πr

半圆的周长 c=πr+2r

圆的周长公式推导(此方面涉及到弧微分)

设圆的参数方程为

圆在一周内周长的积分

代入,可得

面积公式

圆的面积计算公式:

把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。

圆锥侧面积

(l为母线长)

弧长角度公式

扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)

扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)

圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)

扇形面积公式

R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。

也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:

(L为弧长,R为扇形半径)

推导过程:S=πr²×L/2πr=LR/2

过获取滚动条的值来计算已添加控件应该所在的位置

说明:控件可以通过代码生成(推荐)

该方法与网上流传的QQ聊天窗口内RichTextBox方法不同,

属于简单型

用户务必要定义一个数组,用来参与ScrollBar滚动时,将目标控件重新定位

历史介绍

编辑

圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

任意一个圆的周长与它直径的比值是一个固定的数,它就叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。如今有了电子计算机,圆周率已经算到了小数点后五万亿位小数了。