逻辑斯谛增长 编辑

特殊曲线
特别提示:本站内容仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。
逻辑斯蒂增长曲线是一种由比利时数学家Verhulst首次发现的特殊曲线。后来,R.Pearl和L.J.Reed根据这一理论研究人口增长规则,因此,逻辑斯蒂增长的曲线也被称为生长曲线或珍珠里德曲线。

基本信息

编辑

中文名:逻辑斯谛增长

外文名:Logisticgrowthmodel

类型:数学模型

研究:植物群体的发病率

发现者:Verhulst

模型简介

编辑

逻辑斯蒂增长模型又称自我抑制性方程。用植物群体中发病的普遍率或严重度表示病害数(x),将环境最大容纳量k定为1(100%),逻辑斯蒂模型的微分式是:

dx/dt=rx(1-x)

式中的r为速率参数,来源于实际调查时观察到的症状明显的病害,范.德.普朗克(1963)将r称作表观侵染速率(apparent infeCTion rate),该方程与指数模型的主要不同之处,是方程的右边增加了(1-x)修正因子,使模型包含自我抑制作用

线性方程

编辑

其线性方程为:

式中:ln(x/(1-x))称作x的逻辑斯蒂转换值,通常简称逻值(logit(x));

当x=0.5时,逻值(ln(x/(1-x))于0;x<0.5时,逻值为负值;x>0.5时,逻值为正值。S型曲线的直线化,就是将病情(x)百分率转换成逻值后,用普通坐标纸以逻值为纵坐标对时间(t)作图,则病情进展曲线就成为一条直线,也称逻值线。逻值线与纵轴相交的截点,为初始病害数量(x0),逻值线的斜率就是病害的流行速度,即表观侵染速率。

模型计算

编辑

对于预测模型的计算,首先应该确定模型的参数,这就涉及到参数的估计和预测问题。为了达到更好的预测精度,先采用最小二乘回归方程法(OLS),再结合0.618最佳寻求方法优化逻辑斯蒂增长模型。

逻辑斯蒂生长曲线最小二乘法预测模式的建立

为了方便计算,将逻辑斯蒂曲线模型的非线性转变为线性关系。首先,将逻辑斯蒂曲线公式2的模型进行简单的变换,再对公式3双边取对数,它会成为一个线性关系如公式4,5和6所示。这使得它易于通过使用的历史数据建立增长预测模型。

(2)

(3)

(4)

(5)

(6)

因为它是一个线性关系,可以采用普通最小二乘原则来计算系数A,B的值,而且这样可以使得观测值和估计价之间的偏差的平方和最小。

逻辑斯蒂增长生长曲线模型优化

因为仅仅靠预测模型,一次达到较高的预测精度较为困难,为此可以采用对模型进一步选优的方法,来提高预测精度。所以模型的优化方法是根据华罗庚提出0.618选优法,对得到的模型,计算该模型是否能得到预测值和测量值最小残差平方和。